Mr. Hansen Geom. Class Notes 10/30/2008

Just in time for Halloween! It's the world's most deadly theorem!

Lemma: Odd integers have odd squares, and But first, a lemma ... even integers have even squares. Paragraph proof: Wlog, let m be an odd integer. Then Case I (odd) m is of the form 2k+1, where k is some integer. In other words, m is 1 larger than the obviously even integer 2k. . Therefore, $m^2 = (2k+1)^2$ $= (2k)^2 + 4k + 1$ $= 4k^2 + 4k + 1$ $= 4(k^2+k)+1,$ which is I more than the obviously even integer 4(k2+k). Thus m2 is odd. Case II (even) · Wlog, let n be an even integer. Then n is of the form 2k, where k is some integer, since 2 is a factor of any even integer. . Therefore, $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$, which is 2 times the integer $2k^2$. Thus n^2 is even. [

And now, the deadly theorem itself!

Theorem: NZ is irrational

Assume (bwoc) that $\sqrt{2}$ is rational. Then, by def. of rational, $\sqrt{2}$ can be written as a fraction $\frac{\rho}{2}$, where ρ and q are integers. Moreover, wlog, we may assume that p and q are not both even, for we can remove as many common factors of 2 as necessary from each. (For example, if the numerator were 2¹⁷i and the denominator were 2'7; we would merely divide through by 2'7 and take $\frac{f}{g}$ as the simplified fraction $\frac{i}{f}$.)

• Summary: $\sqrt{2} = \frac{\rho}{q}$ for integers ρ, q , where p,q are not both even.

. By algebra, $2 = \frac{\rho^2}{9.2}$

 $2q^2 = \rho^2 \implies \rho^2$ is even (since 2 times any integer is even).

. By the lemma on page 1, p^2 even $\Rightarrow p$ even \Rightarrow p can be written as 2k for some integer k.

. By substitution and more algebra,

 $2q^{2} = \rho^{2}$ $2q^{2} = (2k)^{2}$ $2q^{2} = 4k^{2}$ $2q^{2} = 2k^{2} \Rightarrow q^{2} \text{ is even}$ $q^{2} = 2k^{2} \Rightarrow q^{2} \text{ is even}$ By the lemma again, q^2 even $\Rightarrow q$ even. Thus

p and q are both even. (>+)