Geometry / Mr. Hansen
3/2/2009

Name: ________________________

Proof of the “HUGH” Theorem

 

Given: l, m tangent to circle C at G and T, respectively
Prove: HU = GH

 

 

1. Circle C

| 1. Given

 

2. Lines l, m tangent at G and T, resp.

| 2. Given

 

3.

| 3. Postulate: radius  to tangent

 

4. Construct

| 4. Two pts. det. a line

 

5.

| 5. Same as (3)

 

6.  comp.

| 6. Def. comp.

 

7.

| 7. Radii of same circle are

 

8.

| 8. ITT

 

9.  comp.

| 9. Subst. (8, 6)

 

10.

| 10. Vert.

 

11.  comp.

| 11. Subst. (10, 9)

 

12.  is a rt.

| 12. Def. rt.  (from 3)

 

13.  comp.

| 13. Non-rt.  in a rt.  are comp.

 

14.

| 14. Comps. of same  are  (from 11, 13)

 

15. HU = HT

| 15. ITT

 

16. HT = GH

| 16. TTT [a.k.a. “Ice Cream Cone Theorem”]

 

17. HU = GH

| 17. Trans. (15, 16)

 

(Q.E.D.)

 

 

 

 

 

Faster alternate method (does not require constructing auxiliary segment):

 

1. Circle C

| 1. Given

 

2. Lines l, m tangent at G and T, resp.

| 2. Given

 

3. Left arc SG = arc STG = 180°

| 3. Diag., def. semicircle

 

4. arc ST + arc TG = 180°

| 4. Arc add.

 

5. arc TG = 180° – arc ST

| 5. Alg.

 

6.

| 6. Half SAD [Half D]

 

7.

| 7. Subst. (3, 5, 6)

 

8.

| 8. Alg. [simplif. of 7]

 

9.

| 9. Half SAD [Half A]

 

10.

| 10. Vert

 

11.

| 11. Trans. (8, 9, 10)

 

12. HU = HT

| 12. ITT

 

13. HT = GH

| 13. TTT

 

14. HU = GH

| 14. Trans. (12, 13)

 

(Q.E.D.)