| 
   Honors AP Calculus / Mr. Hansen  | 
  
   Name: _______________________________  | 
 
| 
   11/24/2009  | 
  
   Spare battery bonus (Mr. Hansen’s use only): __________  | 
 
Test #5 CFU: Calculator Required
| 
   1.  | 
  
   State both versions of the
  Fundamental Theorem of Calculus, and prove that each implies the other.  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   2.  | 
  
   Let   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   (c)  | 
  
   For any unknown
  differentiable function g whose
  derivative is known, assume that g(2) is also known. Write an expression for g(2.2).  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   3.  | 
  
   The difficulty of being a
  student, in stress units per day, is given by D(t) = 5 cos(t/30) + 11, where t =
  time in school days since the start of the school year. Compute the total
  difficulty of a year at STA (152 days).  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   4.  | 
  
   Explain why the trapezoid
  rule always overestimates   | 
 
| 
   5.  | 
  
   Find   |