| 
   Honors AP Calculus / Mr. Hansen  | 
  
   Name: _______________________________  | 
 
| 
   11/10/2009  | 
  
   Spare battery bonus (Mr. Hansen’s use only): __________  | 
 
Test #4 (100 points): Calculator Required
| 
   | 
  
   Part I: Standard Proofs (9 pts. each)  | 
 
| 
   | 
  
   | 
 
| 
   1.  | 
  
   Using the chain rule, the
  product rule, and the power rule for derivatives as givens, prove the
  quotient rule.  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   2.  | 
  
   Prove that the derivative
  of any even function is odd. On this problem, you must state the “given” and “prove”
  statements explicitly for full credit.  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   Given:
  __________________________________________  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   Prove: __________________________________________  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   Proof:  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   3.  | 
  
   Use a reference triangle to
  prove the “chain rule ready” formula for   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   4.  | 
  
   Prove by mathematical  induction
  that   | 
 
| 
   | 
  
   Part II: Definitions (6 pts. each)  | 
 
| 
   | 
  
   | 
 
| 
   5.  | 
  
   Define precisely what it means for a function f to be continuous on   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   6.  | 
  
   Define what it means for a
  function g to be “one-to-one” on
  its domain. Zero (0) points will be awarded for a precal-type description based
  on any sort of “line test.”  | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   7.  | 
  
   Give a synonym for each of
  the following (a one-word answer is expected in each case):  | 
 
| 
   | 
  
   | 
 
| 
   (a)  | 
  
   one-to-one:
  ______________________  | 
 
| 
   | 
  
   | 
 
| 
   (b)  | 
  
   locally linear with finite
  slope: ______________________  | 
 
| 
   | 
  
   Part III: Problems (12 pts. each)  | 
 
| 
   | 
  
   Show adequate
  justification. Circle or box your answer for full credit.  | 
 
| 
   | 
  
   | 
 
| 
   8.  | 
  
   Find   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   9.  | 
  
   Let y2 = 2 cos(xy
  + y).  | 
 
| 
   | 
  
   | 
 
| 
   (a)  | 
  
   Compute   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   (b)  | 
  
   State a point where   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   (c)  | 
  
   For the point described in
  part (b), find the derivative of x
  with respect to y.  | 
 
| 
   10.  | 
  
   Let f (x) be defined as x3 + 1 if   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   | 
  
   | 
 
| 
   11.  | 
  
   Sketch the function defined
  parametrically by x = 5 cos t, y
  =   |