Correspondence between Advanced Placement topic outline and course schedule

The following topic list, taken from the Advanced Placement Calculus BC course description, has been annotated to show the cross-references to specific sections in our textbook and/or supplemental activities or lectures. FDWK refers to the textbook Calculus: Graphical, Numerical, Algebraic by Ross L. Finney, Franklin D. Demana, Bert K. Waits, and Daniel Kennedy, published by Scott Foresman, 1999. Copies of this textbook are available on loan if you wish, but the Foerster text by itself should be adequate.

 

I.          Functions, Graphs, and Limits

      Analysis of graphs                                                               §§1-2, 3-1, and others

      Limits of functions (including one-sided limits)                      §§1-5, 2-1, 2-2, 2-3, 2-5

      Asymptotic and unbounded behavior                                   §§2-5, 6-8

      Continuity as a property of functions                                    §§2-4, 4-6

             IVT                                                                             §2-6

             EVT                                                                            §2-6

      Parametric, polar and vector functions

             Parametric                                                                   §§4-7, 4-8 [since implicit
                                                                                                            relations can sometimes

                                                                                                            be plotted parametrically]

             Polar                                                                           §8-9

             Vector                                                                         §10-7

 

II.  Derivatives

      Concept of the derivative

             Deriv. presented graphically, num., analytically              §§1-1, 1-2, 3-1, 3-2, 3-3

             Deriv. interpreted as instantaneous rate of change         §§1-1, 3-1, 4-8, 5-3, 7-4, 7-5

             Deriv. defined as limit of difference quotient                  §§3-2, 3-3, 3-4

             Relationship betw. differentiability and continuity           §4-6

      Derivative at a point

             Slope of a curve at a point                                           §§3-1, 3-5, 3-6, 4-7, 4-8, 7-4

             Tangent line to a curve at a point and local lin. app.       §§3-1, 3-2, 5-3, FDWK p. 107

             Inst. rate of change as the limit of avg. rate of chg.        §§3-2, 3-4, 3-7, 3-8, others

             Approximate rate of change from graphs and tbls.        §3-1, 3-3, 3-5, motion sensor
                                                                                                            activities

      Derivative as a function

             Corresponding characteristics of graphs of f and f '       §§3-3, 3-4, 3-6, 3-8

             Rel. betw. incr. and decr. beh. of f and sgn(f ')                 §§1-2, 3-3, 3-5, many others

             MVT and its geometric consequences                          §§5-6, 5-7, 5-8

             Equations involving derivatives, incl. verbal transl.         Chapter 7, §10-4

      Second derivatives

             Corresp. characteristics of graphs of f, f ', and f ''         §§3-5, 8-1, 8-2, 10-1, 10-2

             Rel. betw. concavity of f and sgn(f '')                           §§8-2, 8-3, 10-6

             Pts. of inflection as places where concav. changes        §8-2

      Applications of derivatives

             Analysis of curves, incl. monotonicity and concav.        §§3-3, 8-1, 8-2

             Analysis of curves in parametric, polar, vector form

                    Parametric                                                            §§4-7, 4-8 [since implicit
                                                                                                            relations can sometimes

                                                                                                            be plotted parametrically]

                    Polar                                                                    §8-9

                    Vector                                                                  §10-7

                    Velocity and acceleration                                      §§3-5, 10-2, 10-7

             Optimization, both absolute and relative                        §§8-3, 10-5, 10-6

             Modeling rates of change, incl. related rates                  §§7-1, 7-2, 7-3, 10-4

             Use of implicit differentiation to find deriv. of inv.          §§4-5 [in exercises], 4-8

             Interp. of deriv. as a rate of change in applications        §3-5, §4-1 activity,

                                                                                                            Chapter 7, Chapter 10

             Geometric interpretation of differential equations

                    ...via slope fields                                                   §7-4

                    ...rel. betw. slope fields and solution curves           §§7-4, 7-5, 7-6,

                                                                                                            Supplemental Lecture 3

             Numerical solution of diff. eqs. using Euler’s Meth.       §7-5, Supplemental Lecture 1

             L’Hôpital’s Rule                                                          §§6-8, 9-10, 12-7

      Computation of derivatives

             Knowledge of derivatives of basic functions

                    Power functions                                                    §3-4

                    Exponential functions                                            §6-5

                    Logarithmic functions                                            §6-6

                    Trigonometric functions                                         §§3-6, 3-8, 4-4

                    Inverse trigonometric functions                              §4-5

                    Hyperbolic and inverse hyperbolic functions          §9-9 [post-exam topic]

             Basic rules for deriv. of sums, products, quotients         §§2-3, 3-2, 4-1, 4-2, 4-3

             Chain rule and implicit differentiation                             §§3-7, 4-8

             Derivatives of parametric, polar, and vector fcns.

                    Parametric                                                            §§4-7, 4-8 [since implicit
                                                                                                            relations can sometimes

                                                                                                            be plotted parametrically]

                    Polar                                                                    §8-9

                    Vector                                                                  §10-7

 

      III. Integrals

             Interpretations and properties of definite integrals

                    Definite integral as a limit of Riemann sums            §§5-4, 5-5

                    Definite integral of the rate of change...(FTC1)      §5-8

                    Basic properties of definite integrals                       §5-9

             Applications of integrals

                    Integral of a rate to give accumulated change         §§5-8, 5-9

                    Area of a plane region                                           §8-4

                    Area of a plane region (polar)                               §8-9

                    Volume of a solid with known cross sections         §8-5

                    Average value of a function                                   §10-3

                    Distance traveled by a particle along a line             §§10-1, 10-2

                    Length of a curve                                                  §8-7

                    Length of a curve (parametric)                              §8-7

                    Length of a curve (polar)                                       §8-8

                    Other applications                                                 Chapter 11

             Fundamental Theorem of Calculus (FTC)

                    Use of FTC to evaluate definite integrals                §§5-8, 5-9, 5-10, others

                    Use of FTC to represent a particular antideriv.      §6-3

             Techniques of antidifferentiation

                    Antiderivatives following from basic functions        Chapter 3, §5-2, Chapter 6

                    Antiderivatives by substitution of variables             §6-9 and others

                    Antiderivatives by parts                                         §§9-2, 9-3, 9-8

                    Antiderivatives by simple partial fractions               §9-7

                    Improper integrals (as limits of def. integrals)         §9-10

             Applications of antidifferentiation

                    Finding specific antiderivs. using init. conds.           Chapter 7, §10-2

                    Solving sep. diff. eqs., using them in modeling        Chapter 7

                    Solving logistic diff. eqs., modeling with them         §§7-4 and 7-5, Supplemental
                                                                                                            Lecture 2

             Numerical approximations to definite integrals

                    Riemann sums                                                       §§1-3, 5-5, 5-7

                    Trapezoidal sums                                                  §1-4 and in numerous
                                                                                                            problems thereafter

 

      IV.  Polynomial Approximations and Series

             Concept of series; convergence and divergence            Chapter 12

             Series of constants

                    Motivating examples, including dec. exp.               Chapter 12

                    Geometric series with applications                         §12-2

                    The harmonic series                                              §12-7

                    Alternating series with error bound                        §12-7

                    Terms of series as areas of rects., incl. int. test       §12-7

                    The ratio test for convergence and divergence       §12-6

                    Comparing series to test for conv. or div.              §§12-6, 12-7

             Taylor series

                    Taylor polynomial approximation with graphs        §§12-3, 12-4, 12-5

                    Maclaurin series and the general Taylor series        §12-5

                    Maclaurin series for ex, sin x, cos x, and 1/(1-x)    §12-5

                    Formal manipulation of Taylor series                     §12-5, Supplemental

                                                                                                            Lecture 5