Geometry / Mr. Hansen
11/16/2007

Name: _________________________

 

Proof (10 pts.)

 

Use a 2-column proof to show that in a kite that is not a rhombus, at least one diagonal is not an angle bisector.

 

 

 

 

 

Diagram:

 

 

 

 

 

 

 

Given:   KITE is a kite with ,
KITE is not a rhombus

 

 

 

 

 

Prove:   At least one of  or  is not an angle bisector

 

 

_________________________________________________________________

 

 

1. ,

|  1. Given

 

2. KITE is not a rhombus

|  2. Given

 

3.  and  are both  bisectors

|  3. Assume bwoc [negation of concl.]

 

4.

|  4. Def. bis.

 

5.  bis.

|  5. PBT

 

6. All 4 angles at A are rt.

|  6. Def.

 

7. All 4 angles at A are

|  7. All rt.  are

 

8.

|  8. Refl.

 

9.

|  9. ASA (7, 8, 4)

 

10.

|  10. CPCTC

 

11.

|  11. Trans. (1, 10)

 

12. KITE is a rhombus

|  12. Def. prop. of a rhombus: 4 sides

 

|  Steps 2, 12

 

(Q.E.D.)

 

 

 

 

Alternate version (streamlined)

 

_________________________________________________________________

 

1. KITE is a kite

|  1. Given

 

2. KITE is not a rhombus

|  2. Given

 

3.  and  are both  bisectors

|  3. Assume bwoc [negation of concl.]

 

4. KITE is a rhombus

|  4. Def. prop. of rhombus: diags. bis.

 

|  Steps 2, 4

 

(Q.E.D.)