IntroCal
/ Mr. Hansen |
Name: _______________________________________ |
9/20/2006 |
Mr. Hansen’s use only (bonus point for spare
batteries): _______ |
Test on §§1.1 through 1.3 and Class Discussion
Please read:
1. |
What is meant by a “formal
system”? Write a short explanation (5-10 words should suffice): |
|||||||||||
|
|
|||||||||||
2. |
|
|||||||||||
|
For the function f whose graph is shown above, sketch a believable f ¢ function on the same set of axes. Make sure that anything that needs to line up vertically actually does. |
|||||||||||
|
|
|||||||||||
3. |
|
Years
after 1900 |
U.S. Debt ($billions) |
|
|
|
|
|
||||
|
|
20 |
25.9 |
|
|
|
|
|
||||
|
|
30 |
16.2 |
|
|
|
|
|
||||
|
|
40 |
43.0 |
|
|
|
|
|
||||
|
|
50 |
257.4 |
|
|
|
|
|
||||
|
|
60 |
290.2 |
|
|
|
|
|
||||
|
|
70 |
389.2 |
|
|
|
|
|
||||
|
|
80 |
930.2 |
|
|
|
|
|
||||
|
|
90 |
3,233.3 |
|
|
|
|
|
||||
|
|
|||||||||||
|
For the data set above,
compute an exponential regression fit and a linear regression fit. |
|||||||||||
|
|
|||||||||||
|
Use your function equations
to estimate the U.S. federal debt at the end of Fiscal Year 2005 (i.e., 105
years after 1900). Do not punch 2005 into your calculator. If you do, you
will get nonsense. |
|||||||||||
|
|
|||||||||||
|
Exponential estimate of
2005 debt » _______________________________ |
|||||||||||
|
Linear estimate of 2005
debt »
_______________________________ |
|||||||||||
|
|
|||||||||||
4. |
Even if you could not
answer #3, you can answer the following questions. |
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
5. |
Consider the points A(–3, 4) and B(–1, –6). Compute Dx, Dy, the slope m, and an
equation (any form OK) of line AB. |
|||||||||||
|
Dx = _____ |
Dy = _____ |
m = _____ |
Equation of line:
________________________ |
||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
|
|
|||||||||||
6. |
Which of the following is
an example of a calculus? |
|||||||||||
|
(A) balancing equations in
chemistry |
(D) composing a song |
||||||||||
|
|
|||||||||||
7. |
The word “calculation” is
derived from a Latin word meaning . . . |
|||||||||||
|
(A) clay pot |
(D) vessel |
||||||||||
|
|
|||||||||||
8. |
The notation f ¢(x) means
the derivative function evaluated at x.
If f (x) = |x|, then f ¢(0) is . . . |
|||||||||||
|
(A) 0 |
(D) ±1 |
||||||||||
|
|
|||||||||||
9. |
If f (x) = x2 and g(x) = sin x + 3, then f (g(p)) equals . . . |
|||||||||||
|
(A) sin 9 + 3 |
(D) 9 |
||||||||||
|
|
|||||||||||
10. |
The rule of GNAV means that
we should be willing to tackle problems . . . |
|||||||||||
|
(A) graphically,
numerically, algebraically (or analytically), and/or visually |
|||||||||||
|
|
|||||||||||
11. |
The notation f ¢¢ means the derivative of f ¢ (i.e., the second derivative of f
itself). For which function f below
are both f
¢ and f ¢¢ always positive? |
|||||||||||
|
|
|
||||||||||
|
|
|
||||||||||
|
|
|
||||||||||
|
|
|
||||||||||
|
|
|
||||||||||
|
|
|||||||||||
12. |
Let a function be defined
piecewise as |
|||||||||||
|
|
|
|
|||||||||
|
|
|
||||||||||
|
|
|
|
|||||||||
|
|
|||||||||||
13. |
|
|||||||||||
|
(A) 0 |
(D) –9 |
||||||||||
|
|
|||||||||||
14. |
For the function f defined in #13, and for x ¹ –3, f (x) is . . . |
|||||||||||
|
(A) x |
(D) x – 9 |
||||||||||
|
|
|||||||||||
15. |
For the function f defined in #13, and for x ¹ –3, f ¢(x) is . .
. |
|||||||||||
|
(A) 0 |
(D) –3 |
||||||||||
|
|
|||||||||||
16. |
In #13, Df is . . . |
|||||||||||
|
(A) (–¥, –3] È [–3, ¥) |
(D) (–¥, –3) È [–3, ¥) |
||||||||||
|
|
|||||||||||
17. |
What useful rule of thumb
did we learn? |
|||||||||||
|
(A) the Rule of 72 for
exponential growth |
|||||||||||
|
|
|||||||||||
18. |
To analyze something means
. . . |
|||||||||||
|
(A) to combine many
unrelated facts into a new whole |
|||||||||||