Honors AP Calculus / Mr. Hansen

Name: _______________________________________

3/1/2007

 

 

Elapsed time (for informational purposes only): ____________

 

Test on Chapter 9 + Chapter 8 Rehash

 

Instructions

 

1.

Consider the ellipse having equation , where a and b are positive constants.

 

 

(a)

Solve for y as two functions of x.

(4)

 

 

 

 

 

 

 

 

 

(b)
(8)

Use the fact that

to prove that the ellipse has area . You may take advantage of ellipse symmetry if you wish.


 

 

 

 

 

 

 

 


 

(c)
(3)

The ellipse can be parameterized as x = a cos q, y = b sin q. Therefore, the ellipse has what polar equation? (Raise your hand to buy a hint if you can’t get this, since you need it for part (d).)

 

 

 

 

 

 

(d)
(8)

Use part (c) and the polar area formula to prove that the ellipse has area .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

The line segment y = 2 – 2x, for –1 £ x £ 1, is revolved about the axis x = –1 in order to create a solid of revolution bounded below by the x-axis.

 

 

(a)
(4)

Sketch the solid.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)
(3)

Compute the volume by a geometric formula.

 

 

 

 

 

 

 

 

 

 

(c)
(8)

Compute the volume by the calculus.

 

 

 

 

 

 

 

 


 

3.
(5 + 5)

Consider the curve  for x Î [–4, 4]. Compute the perimeter and area of the “sideways D” region bounded by the curve and the lines y = 10, x = –4, and x = 4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.
(8)

Compute .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.(a)
(6)

State three methods by which  can be computed.

 

 

 

 

 

 

 

 

 

 

(b)
(6)

Do it.


 

(c)
(6)

Do it by another of the three methods.

 

 

 

 

 

 

 

 

 

 

6.
(6)

Compute .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.
(6)

Compute . Hint: Think of arctangents.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.(a)
(8)

State the definitions of

            sinh x

            cosh x

            tanh x

            sech x

 

 

(b)
(6)

Without using the identity cosh2 x – sinh2 x = 1 (i.e., simply by part (a) and QR), prove that .