AP Calculus AB / Mr. Hansen
2/2/2006

Name: _________________________

Test on Chapter 6


Time limit: 35 minutes (52.5 minutes for extended time)

 

Scoring

· Each numbered question is worth 12 points. Your name is worth 8 points.
· Simplification is not required except for the problems requiring a numerical answer, in which case your answer must be correct to 3 decimal places.
· Work is required only for problems that specifically tell you to show your work.
· If you make a mistake, partial credit is possible if you show some relevant work.
· A calculator is allowed throughout.

 

 

1.(a)

Compute x if

 

 

(b)

What type of problem is posed in part (a)? (The term was presented twice in class, not in the textbook.) _________________________________

 

 

2.

Given: If f is a continuous function on  (or at least on all domains involved in this problem), and if c is a constant, then .

State and prove: The version of the Fundamental Theorem of Calculus that allows you to calculate a definite integral.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

3.

Fill in the blanks. Abbreviations are acceptable.

 

 

 

Given: Compound interest formula , where
            A(t) = account value at time t
            r = periodic interest rate
            n = # of compoundings per period
            t = # of periods
            P = initial deposit
Prove:

 

_____________________________________________________________________

 

1.

| 1. Given

 

2.

| 2. ____________________________

 

2a.          =

| 2a. Prop. of limits

 

3. Let

| 3. ____________________________

 

4.

| 4. ____________________________

 

5.          

| 5. ____________________________

 

6.          

| 6. ____________________________

 

7.          

| 7. ____________________________

 

8.          

| 8. ____________________________



 

9.          

| 9. ____________________________







 

 

 

 

 

 

 

10.          = t · r

| 10. ____________________________

 

11. \ k = ert

| 11. ____________________________

 

12.

| 12. ____________________________

 

 

(Q.E.D.)


 

4.(a)

Derive a simple rule for calculating ,

where f is a continuous function and u is a differentiable function of x. Show your steps, but you do not need to justify each step.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

= _______________________________

 

 

 

 

 

 

 

 

(c)

= _______________________________

 

 

 

 

 

 

 

 

5.(a)

Find .

 

 

 

 

 

 

 

 

 

 

 

 

(b)

Explain why L’Hôpital’s Rule is not needed in part (a).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

Find , showing your steps this time.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.(a)

= _______________________________

 

 

 

 

 

 

 

 

 

 

(b)

= _______________________________

 

 

 

 

 

 

 

 

 

 

(c)

= _______________________________

 

 

 

 

 

 

 

 

 

 

 

 

8.

Compute the number of bacteria at t = 2.5 hours in a colony whose initial size is 10,000 bacteria and whose population function N(t) satisifies exponential growth with N ¢(t) = .05N(t). Units are hours and bacteria count.

 

 

 

Hint: This problem is one you could have answered last year. (It is a precalculus problem, not a calculus problem.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bonus

What minor holiday is celebrated today?

 

 

 

 

 

 

 

 

Bonus

Explain the silly punchline to the joke regarding .