Calculus AB / Mr. Hansen

 

                 Name: __________________________________

Cumulative Review Quiz, 1/9/2004

Instructions: No calculator permitted, no partial credit. Select the best answer in each case. Allow 2 minutes per problem.

 

 

 

 

1. ___

 

 

 

 

(A) –3
(B) –1/4
(C) –1

(D) 0
(E) 16

 

 

2. ___

 

(A) –1
(B)  
(C) 1

(D) 3
(E) 12

 

 

3. ___

If f (u) = ln u  and g(u) = e3u, then g(f (1)) =

 

(A) undefined
(B) 0
(C) 1

(D) 3
(E) e3u

 

 

4. ___

The graph of 50y + 25y2 = 96x – 16x2 + 231 is symmetric with respect to

 

(A) the x-axis
(B) the y-axis
(C) the origin

(D) the line y = x
(E) none of these

 

 

5. ___

The area bounded by y = x3, y = 0, x = 2, and x = 7 is

 

(A) 67
(B) 119.25
(C) 335

(D) 343
(E) 596.25

 

 

 

 

6. ___

If 3x2x2y3 + 4y = 12 determines a differentiable function such that y = f (x), then dy/dx =

 

 

(A)
(B)
(C)

(D)
(E)

 

 

 

 

7. ___

For what value of c is

 

 

 

continuous?

 

 

(A) 3
(B) –3
(C) 6

(D) none
(E) 0

 

 

8. ___

 

 

 

 

(A) 0
(B) 2
(C)

(D) 1
(E) does not exist

 

 

 

9. ___

If f (x) = |x|, then f ¢(x) is a real number when

 

(A) x < 0 only
(B) x > 0 only
(C) x = 0 only

(D) x ¹ 0 only
(E) x
Î Â (any real value)

 

 

 

10. ___

If f (x) = 2x5x3 + x2 + 2 and g(x) = f –1(x), then compute g ¢(4). Hint: f (1) = 4.

 

(A) 9
(B) 1/9
(C) 1/4

(D) 1/2002
(E) 1/2376

 

 

 

11. ___

f (x) = 2x3 – 9x2 + 12x – 3 is decreasing for

 

(A) x < 2
(B) all real x
(C) x < 1 or x > 2

(D) 1 < x
(E) 1 < x < 2

 

 

 

12. ___

 

 

(A) 0
(B) 1
(C) –1

(D) +¥
(E) –
¥

 

 

 

13. ___

(FREE)

 

 

 

 

14. ___

(FREE)