Calculus AB / Mr. Hansen |
|
Name:
__________________________________ |
Cumulative
Review Quiz, 1/9/2004
Instructions:
No calculator permitted, no partial credit. Select the
best answer in each case. Allow 2 minutes per problem. |
|
|||
|
|
|
||
1. ___ |
|
|||
|
(A) –3 |
(D) 0 |
||
|
|
|||
2. ___ |
|
|||
|
(A) –1 |
(D) 3 |
||
|
|
|||
3. ___ |
If f (u) = ln u and
g(u) = e3u, then g(f (1)) = |
|||
|
(A) undefined |
(D) 3 |
||
|
|
|||
4. ___ |
The graph of 50y + 25y2 = 96x – 16x2 + 231 is symmetric with respect to |
|||
|
(A) the x-axis |
(D) the line y = x |
||
|
|
|||
5. ___ |
The area bounded by y = x3, y = 0, x = 2, and x = 7 is |
|||
|
(A) 67 |
(D) 343 |
|
|
|
|
|
||
6. ___ |
If 3x2 – x2y3 + 4y = 12 determines a differentiable function such that y = f (x), then dy/dx = |
|
||
|
(A) |
(D) |
|
|
|
|
|
||
7. ___ |
For what value of c is continuous? |
|
||
|
(A) 3 |
(D) none |
||
|
|
|||
8. ___ |
|
|||
|
(A) 0 |
(D) 1 |
||
|
|
|
||
9. ___ |
If f (x) = |x|, then f ¢(x) is a real number when |
|||
|
(A) x < 0 only |
(D) x ¹ 0 only |
||
|
|
|
||
10. ___ |
If f (x) = 2x5 – x3 + x2
+ 2 and g(x) = f –1(x), then compute g ¢(4). Hint: f (1) = 4. |
|||
|
(A) 9 |
(D) 1/2002 |
||
|
|
|
||
11. ___ |
f (x) = 2x3 – 9x2
+ 12x – 3 is decreasing for |
|||
|
(A) x < 2 |
(D) 1 < x |
||
|
|
|
||
12. ___ |
|
|||
|
(A) 0 |
(D) +¥ |
||
|
|
|
||
13. ___ |
(FREE) |
|
||
|
|
|
||
14. ___ |
(FREE) |
|
||