Chapter 4

Product Rule:

 If f(x) is a product of two functions, g(x) and h(x), then the derivative of f(x) = the derivative of the first function times the second function plus the derivative of the second function times the first function.

            Let f = g times h. f´ = g´h + h´g

 

Quotient Rule:

  f = (numerator function)/(denominator function), the quotient of two functions.

   f´ = n´dd´n

   d2 

 

Chain Rule:

            If f(x) is a composite function such as sin(5x) then the derivative of sin(5x) equals cos(5x) times 5; the derivative of a composite function equals the derivative of the outside function in terms of its inside function times the derivative of the inside function. (if the inside function is not x then, that function is an outside function so another chain rule must be applied)

            Ex: f = sin((5x)2)

                  f´= cos((5x)2) 2(5x)1 5

 

 

 

 

 

 

Derivatives of Trigonometric functions:

1)      sin´x = cosx

2)      tan´x = (secx)2 = sec2 x

3)      sec´x = secxtanx

 

 

 

 

 

 

4)      cos´x = -sinx

5)      cot´x = -csc2x

6)      csc´x = -cscxcotx