
Name:

Test #2 (100 points) Calculator Allowed

- 1.(a) What term do we use for the logical configuration of a network, which may or may not resemble the actual physical layout of the computers and servers that make up that network? *Hint:* It is a branch of mathematics that starts with the letter T. _____
- (b) A *ring* network is one in which the computers are connected in a circular chain, each computer linked to the next. The network below certainly looks like a ring, but is it a ring? _____ If not, what is it? _____

2. Use X(0) = 17 as the starting point for a pseudorandom number generator (PNG). What do we call this starting value? Answer: the ______ . Then, use values of A = 179, B = 773, and N = 256 to execute 5 iterations of the PNG to generate 5 outputs. Convert each output to hex and then to an 8-bit value. Chain all 5 of your 8-bit values together to make a 40-bit bitstream. Show all work below. Remember, the next X is always found by the formula $(AX + B) \mod N$, utilizing the previous X. When counting to 5, do not count the X(0) value of 17. In other words, generate 5 new values of X in order to form your 40-bit bitstream.

3.	Use your ASCII table to encode the message
	STA#1
	as hex. Then XOR that message with the 40-bit bitstream you created in question 2 (or just 40 made-up bits if you couldn't answer question 2) to create an encrypted bitstream. Give your encrypted bitstream in both binary and hex.
4.	Explain briefly how the recipient should proceed in order to decode whatever you produced in question 3. Be sure to explain how the recipient can somehow manage to have a 40-bit

bitstream that would match the one you produced in question 2. If you couldn't answer #2 or

#3, simply explain what would happen if everything were working correctly.

5.	What is even parity used for (2 words)? Explain briefly how even parity works.
6.	State 2 examples of lossy compression (and) and one example of lossless compression ().
7.	What name do we give to a form of "data hiding" in which the secret message is hidden or interspersed within a seemingly innocent-looking file?
8.	Convert each of the following power ratios to dB: (Write +dB ordB in each case.) 350 W increased to 700 W = 200 mW decreased to 1 mW = 5 mW increased to 1 GW =
9.	Convert each of the following decibel changes to a power ratio: +6 dB =: -45 dB =: +10 dB =:
10.	Sketch a circuit diagram for \sim (A xor B) below. Then, use a truth table (either below or on the reverse side of this sheet) to prove that \sim (A xor B) is always equivalent to saying that A and B have the same truth value.