STAtistics / Mr. Hansen 2/25/2014

Solutions to #10.85 and #10.93

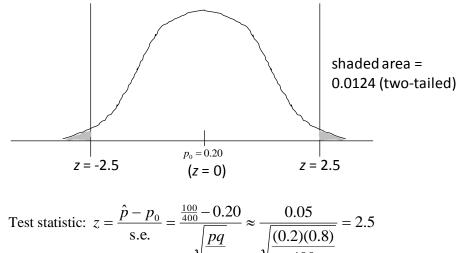
10.85 Let p = true proportion of white cars purchased in local metro area in 1993. $H_0: p = 0.20$ $H_a: p \neq 0.20$

Assumptions for 1-prop. z test

SRS? Not stated, but "random sample" was stated. \checkmark Proceed with caution. Is $n \le \frac{1}{10}N$? If n = 400, surely more than 4000 cars were bought in metro area in 1993. \checkmark Is $np \ge 10$? $np \approx n\hat{p} = 400(\frac{100}{400}) = 100 >> 10$

Is
$$nq \ge 10$$
? $nq \approx n\hat{q} = 400(\frac{300}{400}) = 300 >> 10$ 🗸

Sampling distrib. of \hat{p} , assuming H_0 true:



P-value = 0.0124 (two-tailed) Since $P = 0.0124 < \alpha = 0.05$, we reject H_0 .

Conclusion: Since $P < \alpha$, there is good evidence ($\hat{p} = 0.25, z = 2.5, P = 0.0124$) that the true proportion of white vehicles sold in the local metro area in 1993 differs from the national proportion of 20%.

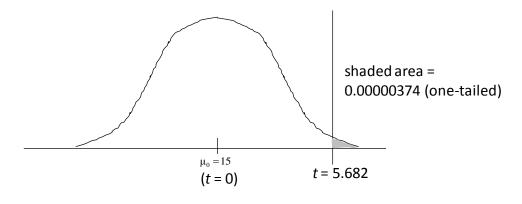
If α were 0.01, our <u>conclusion would change</u>. Since P = 0.0124 > 0.01, we would *not* reject H_0 for this new value of α . [In other words, we would say that there is no evidence ($\hat{p} = 0.25, z = 2.5, P = 0.0124$) that the true proportion of white vehicles sold in the local metro area in 1993 differs from the national proportion of 20%.]

10.93 Let μ = true mean time (minutes) to achieve 100°F. $H_0: \mu = 15$ $H_a: \mu > 15$

Assumptions for 1-sample t test

SRS? Not stated, but "random sample" was stated. \checkmark Proceed with caution. Pop. distrib. normal? Not stated. However, n = 25, which is large enough in the absence of outliers or strong skewness. \checkmark Proceed with caution.

Sampling distrib. of \bar{x} , assuming H_0 true:



Test statistic:
$$t = \frac{\bar{x} - \mu_0}{\text{s.e.}} = \frac{17.5 - 15}{\frac{s}{\sqrt{n}}} = \frac{2.5}{\left(\frac{2.2}{\sqrt{25}}\right)} = 5.682$$

P-value = 0.00000374 (one-tailed)

Since $P \approx 0 < \alpha = 0.05$, we reject H_0 . [In fact, we would reject H_0 for virtually any value of α since the result is so highly significant.]

Conclusion: Since $P < \alpha$, there is extremely strong evidence ($\overline{x} = 17.5, t = 5.682, df = 24, P = 0.00000374$) that the true mean time to heat tubs to 100°F exceeds 15 minutes.