Geometry / Mr. Hansen |
Name: ________________________ |
Solution Key for Selected Review Problems
|
Chapter 12 Review (p. 597) |
17. |
Vdesired = Vblock Vcylinder |
20. |
Sketch circle O with sector AOB: Since central ÐO = 60° and ÐA @ ÐB (base Ðs of isosc. D), DAOB is equilateral with area s2(Ö3)/4 = 102(Ö3)/4 = 25Ö3. Asegment AB = Asector AOB ADAOB Note here that we used the fact that r = 10, which follows from the cross-section diagram above. Because the log is an extruded shape (i.e., a generalized cylinder), TSAlog = Afront cap + Aback cap + Aflat top + Acurved bottom Again, note that the circumference C uses the fact that the log has diameter 20, which is clear from the cross-section diagram above. |
21. |
The trick is to extend the cone upward to apex A: Let AE = x. Then x/(x + 6) = GE/FD = 9/12. Solving gives If AD = 24 and FD = 12, then by inspection, rt. Ds AGE and AFD are not only similar but also 30°-60°-90°. (You wouldnt necessarily have this, but its helpful to notice that it happens in this particular problem.) Thus AG = 9Ö3, AF = 12Ö3. Vfrustum = Vcone ACD Vcone ABE |
22.(a) |
The given triangle is 30°-60°-90° with hypotenuse 8. Thus the short leg is 4, and when spun, the figure makes a cone with slant height 8, radius 4, and height 4Ö3. Vcone = (1/3)ßh |
(b) |
When spun, the figure forms a tube with outer radius 4 and inner radius 3 (i.e., a short pipe with walls of thickness 1, outer diameter 8, and inner diameter 6). Another way to think about this is as a large cylinder with a cylindrical hole removed from its center. Vdesired = Vouter cyl. Vinner cyl. |