AP Calculus AB / Mr. Hansen Name: K E Y
10/12/2005

Sample Test

Time limit: 32 minutes (48 minutes for extended time).

Calculator is permitted for all problems.

Do not spend too much time on any single problem.

Clues to some problems that you cannot solve initially may be found elsewhere in the test.
All problems are free-response.

Use appropriate mathematical notation. Legibility counts.

1. Sketch a function fthat is not defined at x = 3 and has a step discontinuity there.
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2. Explain clearly why, even if #1 is modified so that the function is defined at x = 3, the

function cannot possibly be differentiable there. Try to consider at least two different

cases, i.e., different ways in which the function can be defined at x = 3. A formal proofis
not expected. A+ least one of the [H or RH deriy. will always be jufinite.
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3. State the IVT. Standard abbreviations are encouraged. except with” 3-2 in the numerater,
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Explain clearly in what way(s) the given function violates the hypotheses of the IVT for
any closed interval that includes 0.
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Prove, rigorously, that even though function fin #4 violates the hypotheses of the IVT
for [-2.356, 0.786], a closed interval that includes 0, the IVT conclusion is nevertheless
true. You may find a sketch to be helpful, but a sketch is not required.
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6. Sketch a function that violates both the hypothesis and the conclusion of the IVT.
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7. Sketch two functions fand g that are continuous on R and have the property that f (a) >

g(a), while f(b) < g(b), where a < b. Let h(x) = f (x) — g(x), and take it as a given that the
difference of continuous functions is continuous. Prove that 3x € (a,b) > f(x) = g(x).
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8. Leth(x)=x"—10x*+3x +31.

(a) Suppose that someone doubts that this polynomial function is continuous. (We already
know that all polynomials are continuous, but assume that there is someone who did not
get the memo.) Use the definition of continuity (all 3 parts) to prove that % is continuous
on [2, 3]. Limits can be proved using limit properties; no need for epsilons and deltas
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(c) What does T allow yourto conclu regarding roots?

Since 0 is strictly between A(z) and h(3), IVT says
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9.(a) Sketch a continuous function fthat has a cusp at x = 1.5, such that f'is differentiable on
R {15}, hm f'(x) = -, and llm f'(x) = +oo.

e

1.5
(b, c) What role does the line x = 1.5 play for /" ? for fitself?

: -’
These answers are easier to wnderstand if we skeitch 7[ ;
(

F&)

- \

(

\
(%) @ ]
1

(o) (rertieat tanyend




. Find 2 ify —33\/3x3 —3cos’(3sin’ 3x° — 3x3 +3)° .
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11. Solve the following differential equation for y subject to the initial condition (2, —1):
y' =sin3x+2x* - (x-1)*
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12. In#11, compute y when x = 2.3. (Note that this question can be answered even if you
were unable to answer #11 itself.)

%(2.3) = £497%... é/ plagging into #1,  or
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